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The plane problem of a longitudinal crack loaded by a uniform pressure at its sides and symmetrically positioned in a prestressed 
thin layer with free boundaries is considered. The layer is prestressed in its plane by uniform forces applied at infinity. It is asSumed 
that the material of a layer is described by an harmonic-type elastic potential. The additional stresses caused by the presence of 
the crack in the layer are considered to be small compared with the stresses of the main non-linear stress-strain state of the 
layer. This makes it possible to linearize the problem of determining the additional stresses on a background of the main stressed 
state. Such a linearized problem reduces to an integral equation of the first kind with a singular kernel with respect to a derivative 
of the function describing the crack opening. Asymptotic solutions of the integral equation for small values of the dimensionless 
parameter characterizing the layer thickness, are constructed for different values of the dimensionless parameter characterizing 
the prestressing of the layer. Examples are given. 

Similar problems concerning cracks in prestressed bodies were examined earlier (see, for example, [1, 2]). The problem is 
studied here for the first time. © 2005 Elsevier Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  I N I T I A L  R E L A T I O N S  

Consider an infinite elastic layer with an harmonic-type potential. In the initial state the layer is under 
conditions of a uniform field of normal stresses in its plane. There are no initial normal or shear stresses 
on areas parallel to the layer boundaries. With these assumptions, the displacements and stresses in 
the initial state are given by the formulae [3] 

o = o = 2gk] l (kj_  ~L2) uj = (Xj- l)xj (~,j- 1)LTlyj, ojj 

~.j = const, j = 1,2,3; ~ , ( ~ . 1 + ~ 2 + ~ . 3 - 3 )  = - 2 g 0 . 2 - 1 )  
(1.]) 

where xj are Lagrangian coordinates, yj are the Cartesian coordinates of the initial state, )~ and g are 
constants of elasticity, and Lj are the coefficients of extension along the xj axes - they are always positive. 
The region occupied by the layer in the initial state is defined by the conditions 

lYt[ < ~' ,  lYzl < h, [Y31 

Suppose there is a crack in the middle plane of the layer that in the initial state occupies the region 

lY,l a, Y2 = 0, ]Y3l<°° 

A uniform pressure q is applied to the sides of the crack, and the layer boundaries Y2 = +h are 
load-free. We will assume that the disturbances of the initial stress field by the load q are small. In this 
case, the problem of determining the initial stresses and displacements can be linearized on the 
background of the main non-linear stress-strain state (1.1). Here, additional displacements ul and u2 
of points of the layer, caused by the load q, satisfy the following equilibrium equations describing plane 
strain [3] 
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2 b2Ul 02/21 b2U2 
Ot bl-c-T + b2--C-T + - 0 

by] by 2 °~Y-7~ 

02/'/2 2 O2U2 O2Ul 
blT--T +or b2-7--~- + ~ y - 7 ~  2 = 0 

by 2 by] 
(1.2) 

bl (1 + ~ ) ( ~ + 2 )  b2 = 2~ ~q, 9~ 
= ( l+(x) [~+2 ' ( l+cz)[~+2;  Ot = ~22 ~ = 

while the additional stresses (I21 and 022 are related to the additional displacements by the relations [3] 

21.t__(bUl bu2~ la r bu I bu2"~ 
(~21 = ~,3( 1 + ~)~.3y2 + b-77yl), 0-22 = ~ O ~ y l  "t" (l~'l- 2)~y2) (1.3) 

(similar formulae for the additional stresses (~11 and o12 are not required henceforth). 

2. R E D U C T I O N  OF THE P R O B L E M  TO AN I N T E G R A L  E Q U A T I O N  

We will first consider an auxiliary problem with the following boundary conditions 

Y2 = h: O'21 = 0"22 = 0 

bu 2 Y2 = 0:0"21 = 0, ~yj = ~)'(Yl) (2.1) 

lY,[ <a:  "~'(Yl) = Y'CY~); lyd >a:  "~'(Yt) = 0 

To investigate it we will seek the solution of Eqs (1.2) in the form [3] 

b2Z u2 = (b,ot O~2 b2b 2"] 
ul - 3Y,bY2' t by] + ~'~y22) Z (2.2) 

Here, the first equation of (1.2) is satisfied identically, and the second leads to the following equation 
for the functions Z [3] 

2 + 7-~1 Z = 0 (2.3) 
~. bYl oY2J 

Below, the function Z will be sought in the form of a Fourier integral 

1 = ~-~ f X(V, Y2)e-tVY'dy (2.4) 

Substituting expression (2.4) into Eq. (2.3), we obtain for the Fourier transform X(y, Y2), after solving 
an ordinary differential equation, the expression 

X = [C 1 (g) + C2(7)o~lgly2]e aYyz + [C3(]t ) + C4(]t)o~l'yly2]e -alYly2 (2.5) 

Now, to determine the quantities C/(y) (l = 1, 2, 3, 4), we will represent the discontinuous function 
7' (Yl) of the form (2.1) as a Fourier integral 

"~'(Yl) = ~ F(y)e-'~Y~dY (2.6) 
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Fig. 1 

and, using formulae (1.3), (2.2) and (2.4), rewrite boundary conditions (2.1) in terms of Fourier 
transforms. As a result, taking into account formula (2.5), we arrive at a system of four algebraic 
equations in the quantities C1(7). Solving this system, we find, in particular, 

2 2 2 2  2 
i0 . ,2(sh o~hy-(x h y G )^-i'[y,~, 

~22(Y,,0) = -~--~ I r ( y )  ~ . u I 

0 = g ( 3 ~ -  1)13+4o~-2 (o~+ 1)1~+2 
~.3(x(~+2) , G = ( 3 ~ - 1 ) [ ~ + 4 c ~ - 2  

(2.7) 

The quantity 0 will be called the contact stiffness. 
Figure 1 shows 0~3/g and G as a function of a for [3 = 2. It can be seen that, at a certain value 
= O~cr < 1 (in the present case act = 2/5), the value of 0~3/g vanishes, while the quantity G goes to 

infinity. Below it will be assumed that cz > acr- 
We will now consider the main problem. Its boundary conditions differ from the boundary conditions 

of auxiliary problem (2.1) only in the fourth condition, which now has the form 

~ u  2 
Y2 = 0, lY,I <-a: ~22 = -q;  Y2 = 0, lY,I >a:  0y, = 0 (2.8) 

where q is the uniform pressure acting on the sides of the crack. 
Transforming relation (2.6), we obtain 

a 

r ( y )  = IY'(~)eiV~d~ (2.9) 
- - a  

Substituting expression (2.9) into relation (2.7) and then equating (2.7), when l Yl ] < a according to 
the first condition of (2.8), to the quantity --q, we arrive at the following integral equation in the function 
Y'(Yl) 

a 

y'(~/K d~ =----~-q, lynl<a, H = ah 
- a  

K(z)  = IL(u)s inuzdu,  L(u) = 2(shZu-u2G2) 
sh2u + 2uG 

0 

(2.10) 
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Note that for the function L(u) the following asymptotic relations hold 

L(u) = 1 + O(e-2U), (u--) ~)  

l ( - 2 G  3 (2.11) 
L(u) = ( 1 - G ) u - 3  I +G) u + O(uS) (u---)0) 

Below, we will use the integrals [4] 

i sinuzdu = 1, I cosuzeu = rtiS(z) (2.12) 
Z 

o o 

where g(z) is the data function. By virtue of the first relation of (2.11) and the first integral of (2.12), 
it follows that integral equation (2.10) is singular. 

If G = 1 (this will be so when c~ = 1) and )~3 = 1, then, by virtue of the final formula of (1.1), 
7~1 = X2 -- 1. In this case, integral equation (2.10) becomes the integral equation of the problem of a 
crack in a non-prestressed layer with free boundaries. This problem was considered earlier [5]. Note 
also that in this particular case, by virtue of the second formula of (2.7), 

0 = 2g)~+2g 1 -  (2.13) 

where g is the shear modulus and v is Poisson's ratio. 

3. T H E  D E G E N E R A T E  S O L U T I O N  OF I N T E G R A L  E Q U A T I O N  (2 .10)  
AT c~ ~ 1  

Note that Y'(Yl) is an odd function. We integrate integral equation (2.10) once with respect toyl.  We 
will have 

a 

~'(~)M d~ = -~qy  l, ly,[ <-a (3.1) 
- - a  

M(z) = fC  cosuzd. 
o 

(3.2) 

It can be shown that integral equations (2.10) and (3.1) are equivalent, and their common solution 
has the form [6] 

0~(yj) 

3 t ' (y j ) -  ~ a 2 _ y  I 2 (3.3) 

where co(y1) is at least a continuous function. 
It is well known [6] that the degenerate solution of integral equation (3.1) for low values of the 

parameter e = H/a will be determined if, in the kernel M(z) of the form (3.2), the function L(u) is 
replaced by the first term of its zero expansion. On the strength of this, according to the second formula 
of (2.11), and taking into account the second integral of (2.12), we will find 

M(z) - ( 1 - G)rt~(z) (3.4) 

Substituting this expression into integral equation (3.1) and evaluating the integral using the well-known 
property of the delta function, we arrive at the following expression for the degenerate solution 

qYl (3.5) 
" / ' (Yl)-  ( 1 - G ) H 0  

It has no characteristic root singularity at the pointx = +_a, as required by the form of (3.3), and therefore 
it is said to be degenerate. 
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Integrating equality (3.5) with respect to Yl and using the condition of the crack closure 

~(+a) = 0 (3.6) 

we finally obtain 

2 2 

q(a - Yl) (3.7) 
"t'(Yj) - 2 (1 -G)HO 

Analysing formula (3.7), we see that, when G > 1 (~z < 1), the crack opening is negative. Physically 
this means that, for values O~cr < Ix < 1, the crack does not open. Below, we will examine the case when 
( z> l .  

From formula (3.7) it can be seen that, in the crack region, at very small values of the parameter ~, 
when we can confine ourselves to the degenerate solution, the layer is deformed in the same way as a 
membrane with restrained edges Yl = _+a. 

4. A B O U N D A R Y - L A Y E R  TYPE S O L U T I O N  OF E Q U A T I O N  (2.10) 
W H E N  ~z > 1 

We will construct a boundary-layer type solution for small values of parameter c in the neighbourhood 
of the pointsyl = _+a. For this, in integral equation (3.1) we will replace the variables according to the 
formulae 

a+Yl a+_{ 
t -  H '  x -  H (4.1) 

we will introduce the notation 

~p+(x) = T'(+ ~Hq: a) (4.2) 

and we will let c tend to zero in the upper limits of variation of z and t. As a result we arrive at the 
following integral equation in the functions q0_+(t) 

Icp~(x)M('¢- t)dx = -~,q,(+ tH q: a) (0 < t < oo) (4.3) 
1-113 

0 

Solutions of integral equation (4.3) can be found by the Wiener-Hopf method [7]. 
To construct solutions in analytical form, we will approximate the function L(u) by the expression 

L,(u)  - u~u2+ A2 
2 B2 (A >0, B > 0 )  (4.4) 

u + 

and we will examine an integral equation of type (4.3) with kernel 

M,(z)  = [L*(U) cosuzdu (4.5) 
a U 
0 

from which we find q~* (t). 
It is well known [6] that, with this approach, the relative error 

suptlq~±(t ) - ¢p* (t)] I~±(t}l-' (4.6) 

will not exceed the relative error 

sup,lL(u) - L,(u) l  IL(u)l -I (4.7) 
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and will have a smaller value the more accurately the function L,(u) approaches the function L(u) for 
small values of u. Note that the function L,(u) tends to unity as u --4 ~ ,  as required by the first relation 
of (2.11), and, to minimize the error of the solutions 9*(0, we will select approximation constants (4.4) 
so that, for L,(u), the second relation of (2.11) is satisfied. This will be so if 

A 2A 2 - B 2 1 - 2G 
B--- ~ = 1 - G ,  - ( 4 . 8 )  2AB 4 3(1 + G) 

We will introduce into consideration the Laplace-Carson originals of the functions 

1 
ak(P) = k , k =-2,-I,0, I,2,3 (4.9) 

p J p + A  

We have [8] 

Ae -At e -At e-At 
b-2(t) = ~ 2t-"-'~ + C, b_l(t ) = , f ~  

e r f ( , f~ )  ( t 1 ) te -At erf( ,,/A--} ) bl(t ) = _ + 
b ° ( t ) -  ~ ' " ~  ~. ~ A4~t 

e ' t'¢t2 ' )+ tea' (t- ) 
b2(/) = 2,4t'~ k. - A + ~ ' 2  2 a , f ~  

b3(t ) _ eff(~-t)(t364 r~ ~. - 2-A3 t 2 + ~ 9  t -8--~j15 ] + ~ k ,  te-At (t2 - 2t  + _~)15 

(4.10) 

where C is an infinite constant and eft(x) is the probability integral (all the formulae in (4.10) will be 
used in their entirety in Section 6). Now, as a result of using the Wiener-Hopf technique (we omit the 
details), we will obtain 

cp*(t) = q + - - ~ [ -  Hcpl( t) T- a~Po(t)] 

0 2 

~o(t) = ~AAb_l(t) +--~bo(t)  (4.11) 

B - 2A , B 2 B 2 
~1(/) = ~ b-l(t) + ' ~ b o ( t )  + ~ b l ( t )  

2A ~'" 4,4 

It is easy to show that boundary-layer type solution (4.11) automatically increases exponentially with 
the degenerate solution (3.5). On the strength of this, the main term of the asymptotic form of the solution 
of integral equation (2.10) for low values of the parameter e can be represented approximately in the 
form 

V'(yi) = V+ ~.---H---) + 9 "  4 
qYl 

(I - G)HO 
(4.12) 

Note that relation (4.12) already has the form of (3.2). 
We will find the normal stress intensity factor at the crack tip (on its continuation) by means of formula 

(3.5) of [91 

N = -lim0~/'(yl) a,,/-a-~-yn (Yl --') a) (4.13) 

On the basis of relations (4.11) and (4.12) we have 

N 1 
q'-da = 2a,,]rtae [(-  B + 2A)e + 2BA] (4.14) 
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5. THE DEGENERATE SOLUTION OF INTEGRAL EQUATION (2.10) 
WHEN c~ = 1 

When a = I we have G = 1, and the behaviour of the function L(u) as u ~ 0 changes qualitatively. 
Unlike the second formula of (2.11), we find 

L(u) = 16u3_3.0 u l  5+O(u 7) (u--~O) (5.1) 

We integrate integral equation (2.10) three times with respect to Yl and obtain 

a 

I"(~)N(~H-~)d~---6H20(qy31+D,Yl),  lYl[ <-a 
- - a  

N(z) = IL(-~) cosuzdu 
u 

o 

(5.2) 

where D.  is still an arbitrary constant. 
Integral equation (5.2) is equivalent to integral equation (2.10). Its general solution is given by the 

formula [10, 11] 

~(Yl) 
y'(y,) - (5.3) 2.3/2 (a2- yl) 

where the function ~(Yl) has at least a continuous first derivative. Note that the equivalence of these 
integral equations will be restored, and the structure of (5.3) will change to the structure of (3.2) if 
~(_+a) = 0. This can be achieved by an appropriate choice of the constant D.,  which will be done in 
Section 6. 

As above, the degenerate solution of integral equation (5.2) for small values of parameter e will 
be determined if in the kernel N(z) of type (5.2) the function L(u) is replaced by the first term of 
its expansion (5.1). By virtue of the above, and taking into account the second formula of (2.12), we 
obtain 

N(z) - gS(z)/6 (5.4) 

Substituting expression (5.4) into integral equation (5.2) and evaluating the integral, we arrive at the 
following expression for the degenerate solution 

| 3 
Y'(Yl) = --v-(qYl + D,Y1) 

H~O 
(5.5) 

As might have been expected, it does not possess the structure of (5.3). 
In Section 6 it will be shown that for D.,  for small values of ~, the asymptotic formula 

D, = -qa2[ 1 + O(e)l (5.6) 

holds. 
Substituting expression (5.6) into equality (5.5), neglecting the term O(e) and integrating with respect 

to Yl, taking into account the condition of the crack closure (3.6), we obtain 

Y(Yl ) = 4q3-----~( a2 - Y21)2 (5.7) 

From formula (5.7) it can be seen that, in the crack region, for very small values of the parameter e, 
when it is possible to confine ourselves to the degenerate solution, the layer is deformed in the same 
way as a Kirchhoff-Love plate with clamped edgesyl = _a. 
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6. B O U N D A R Y - L A Y E R  T Y P E  S O L U T I O N  OF E Q U A T I O N  (2 .10)  
W H E N  ct = 1 

As above, in integral equation (5.2) we will make the replacement of variables (4.1), we will introduce 
the  notation (4.2) and we will let e tend zero in the upper  limits of the ranges of variation of "c and t. 
As a result, we will arrive at the following integral equation 

~tp+(~)U('c - t)d~ = 6H3----~[q(+ tH T- a) 3 + D , ( +  tH T- a)] (0 < t < ~)  (6.1) 
0 

The solutions of integral equation (6.1) can again be found by the Wiener-Hopf  method [7]. 
To construct solutions in analytical form, we will approximate the function L(u) by the expression 

u3 u,~+ A 2 
L . (u )  - (A > 0, B > 0) (6.2) 

(u 2 + B2) 2 

and consider an integral equation of type (6.1) with kernel 

N,(Z) = fL*-~(~)cosuzdu (6.3) t 

U o 

from which we find (p*(t). 
Note that the function L,(u)  tends to unity as u ~ 0% as required by the first relation of (2.11), and 

we will select the approximation constants (6.2) such that for L,(u)  relation (5.1) is satisfied. This will 
be so if 

A 1 4A 2 - B 2 1 
B 4 6' (6.4) 2B6A 30 

We will introduce the notation 

= B/A 

and, using the Wiener-Hopf  technique [7], we will obtain 

~ _ + * ( t )  = - -  6130 {q[+ H3(p3(t) :t: 3HZatpz(t) + 3Ha2tpj(t) T- a3tp0(t) ] + D , [ +  tpl(t ) :1: a~00(t)] } 

B2 ~ A  3 B4 
(P0(t) = ~ b _ 2 ( t  ) + b_ l(t) + -~bo(t ) 

tPl(t) = ~ A A ( - 2 - ~ ) b  2(t)+ B2 84 B4 _ - '~ ( -3+r , )b_ l ( t )+~-~bo( t )+-~b , ( t )  

tPz( t )=~A(2-2~c+~c2)b_2( t ,+~3/2(-3+~)b_, ( t )+ 

+ ~ ( - 4 + : l ¢ 2 ) b o ( t ) +  B4-~-~b,(t) + ~A4bZ(t) 

1 9 (P3(t, = ~--~(3-~l~+~K:2)b_2(t)+ l ( .~07_4_K 27 2+~.~:15 3"~ b)_l(t,  + 

B 2 B 2 
+ ~ - ~ ( - 6 +  15~2)bo(t) + ~ ( ,  12 + 9~:2)bj ( t ) + 3 B4A 3/2b2( t )" + 6B4 " " - -  -~b3~t ) 

(6.5) 

It can be shown that here a solution of the boundary-layer type (6.5) also increases automatically 
together with degenerate solution (5.5), but by a power law. On the strength of this, the main term of 



the asymptotic form of the solution of integral equation (2.10), for small values of the parameter e, can 
be represented approximately in the form 

, a + Y l  . (p+( ~ . ~. ) . ( a -  y,'~ 1 . 3 
~t ' (y l )  = ( P - ~ - ' - - ~ ) - ~ o t q Y I  + D , y l )  (6.6) 

Note that expression (6.6) has the form of formula (5.3). However, it is necessary for expression (6.6) 
to have the for of (3.2), and for this it is necessary in (6.5) to equate the coefficient of b_2(t) to zero. 
As a result of this, for D .  we obtain the expression 

2 qa pl(e)  
D ,  = 4ABP2(I~ ) (6.7) 

Pl (e) = (-  24 + 36K- 151(2)E 3 + (48 - 48~ + 18K2)82 + 

+ B A ( 4 8 + 1 2 K ) 8 + 8 B 2 A ,  p2 (E)  = ( 4 + ~ : ) e + 2 B  

It can be seen that the expansion of D ,  in powers of e leads to asymptotic formula (5.6). 
The normal stress intensity factor at the crack tip can be obtained from formula (4.13). On the basis 

of formulae (6.5)-(6.7) we have 

N P3(E) 
q.f~ ~- 1 2 e P 2 ( e ) 4 r ~  (6.8) 

p 3 ( e )  = (48  - 24~: + 12• 2 - 241( 3 + 151(4)E 3 + 

+ B(96-  48~: + 42K: 2 - 18K3)E 2 + B2(48 - 12~Z)e + B3(8 + 16K) 

7.  E X A M P L E S  

20 

N / ( q.ffa ) 

Let I~ = 2. We will consider the cases when ot = 2 (G = 1/2) and c~ = 1 (G = 1). 
For approximation (4.4), using formulae (4.8), we obtain A = 1 and B = q~, and the error of the 

approximation will be 11%. 
For approximation (6.2), using formulae (6.4), we obtain A = 0.855878 and B = 1.505361, and the 

error of the approximation will be 26%. 
Figure 2 shows curves of N/(q'~aa) as a function of ~, calculated by means of formula (4.14) (c~ = 2) 

and by means of formula (6.8) (o~ = 1). 

10 
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The fracture criteria for prestressed bodies, using the normal stress intensity factor N at the crack 
tip, were given previously in [1]. 

C O N C L U S I O N S  

F r o m  a compa r i son  o f  curves 1 and 2 in Fig. 2 it  can be  conc luded  tha t  the  va lue  of  the  p a r a m e t e r  ~,  
charac te r iz ing  the  pres t ress ing  of  the  layer,  has  a cons ide rab le  effect  on  the  magn i tude  of  N. 
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